5 resultados para Solanum pimpinellifolium

em eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internal browning disorders, including brown fleck (BF), in potato (Solanum tuberosum) tubers greatly reduce tuber quality, but the causes are not well understood. This is due, in part, to the highly variable data provided by visual value-based rating systems. A digital imaging technique was developed to quantify accurately the incidence of internal browning in potato tubers. Images of tuber sections were scanned using a flatbed scanner and digitally enhanced to highlight tuber BF lesions, and the area of affected tissue calculated using pixel quantification software. Digital imaging allowed for the determination of previously unused indices of the incidence and severity of internal browning in potato tubers. Statistical analysis of the comparison between digitally derived and visual-rating BF data from a glasshouse experiment showed that digital data greatly improved the delineation of treatment effects. The F-test probability was further improved through square root or logarithmic data transformations of the digital data, but not of the visual-rating data. Data from a field experiment showed that the area of tuber affected by BF and the number of small BF lesions increased with time and with increase in tuber size. The results from this study indicate that digital imaging of internal browning disorders of potato tubers holds much promise in determining their causes that heretofore have proved elusive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2012, a project was initiated to assess if the soft rot disease of ginger in Australian fields was associated with pathogens other than Pythium myriotylum. Together with nine Pythium spp., ten isolates of a Pythium-like organism were also recovered from ginger with soft rot symptoms. These Pythium-like isolates were identified as Pythiogeton (Py.) ramosum based on its morphology and ITS sequences. In-vitro pathogenicity tests allowed confirmation of pathogenicity of Py. ramosum on excised carrot (Daucus carota), sweet potato (Ipomoea batatas) and potato (Solanum tubersum) tubers, although it was not pathogenic on excised ginger (Zingiber officinale) and radish (Raphanus sativus) rhizome/roots. In addition it was found to be pathogenic on bean (Phaseolus vulgaris), capsicum (Capsicum annuum) and cauliflower (Brassica oleracea var. botrytis) seedlings. This is the first record of Py. ramosum and its pathogenicity in Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tomato I-3 and I-7 genes confer resistance to Fusarium oxysporum f. sp. lycopersici (Fol) race 3 and were introgressed into the cultivated tomato, Solanum lycopersicum, from the wild relative Solanum pennellii. I-3 has been identified previously on chromosome 7 and encodes an S-receptor-like kinase, but little is known about I-7. Molecular markers have been developed for the marker-assisted breeding of I-3, but none are available for I-7. We used an RNA-seq and single nucleotide polymorphism (SNP) analysis approach to map I-7 to a small introgression of S. pennellii DNA (c. 210 kb) on chromosome 8, and identified I-7 as a gene encoding a leucine-rich repeat receptor-like protein (LRR-RLP), thereby expanding the repertoire of resistance protein classes conferring resistance to Fol. Using an eds1 mutant of tomato, we showed that I-7, like many other LRR-RLPs conferring pathogen resistance in tomato, is EDS1 (Enhanced Disease Susceptibility 1) dependent. Using transgenic tomato plants carrying only the I-7 gene for Fol resistance, we found that I-7 also confers resistance to Fol races 1 and 2. Given that Fol race 1 carries Avr1, resistance to Fol race 1 indicates that I-7-mediated resistance, unlike I-2- or I-3-mediated resistance, is not suppressed by Avr1. This suggests that Avr1 is not a general suppressor of Fol resistance in tomato, leading us to hypothesize that Avr1 may be acting against an EDS1-independent pathway for resistance activation. The identification of I-7 has allowed us to develop molecular markers for marker-assisted breeding of both genes currently known to confer Fol race 3 resistance (I-3 and I-7). Given that I-7-mediated resistance is not suppressed by Avr1, I-7 may be a useful addition to I-3 in the tomato breeder's toolbox.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-lycopene tomatoes (Solanum lycopersicum) are characterised by an intense red flesh-colour, due to an elevated concentration of the carotenoid, lycopene. However, this characteristic is only visible once fruit are cut open, making it impossible to differentiate intact high-lycopene fruit from standard tomato fruit, a clear market disadvantage. The reason that fruit colour of both high-lycopene and standard fruit looks almost identical from the outside is because tomato fruit normally contain the yellow flavonoid 'naringenin chalcone' in a thin layer of epidermal cells. It is this combination of naringenin chalcone and the underlying lycopene in the flesh that gives tomatoes their characteristic orange-red colour. By incorporation of the recessive colourless epidermis mutant allele 'y' (which prevents naringenin chalcone accumulation) into high-lycopene fruit, we have been able to create high-lycopene tomatoes (hp1.ogc.y) exhibiting a deep-pink colour visible from the outside. Hue angle of the skin of the high-lycopene 'y' mutant and a regular highlycopene tomato (hp1.ogc.Y) was 30 and 38°, respectively, while flesh values were similar at 31 and 32°, respectively. Removal of naringenin chalcone from the epidermis appeared to improve the visibility of underlying lycopene, such that fruit outer colour became a subsequent indicator of underlying flesh colour. The removal of epidermal pigmentation means that high-lycopene fruit can now be differentiated from standard tomato fruit in the market place without the need to cut fruit open.